• 1. Alta estabilidad térmica: Los crisoles de alúmina pueden soportar temperaturas extremas, que a menudo superan los 1700 °C, sin deformarse ni fundirse, lo que los hace ideales para su uso en procesos que implican calor intenso. 2. Inercia química: La alúmina es muy resistente a la corrosión y a las reacciones químicas con la mayoría de los ácidos, bases y metales fundidos. Esta inercia garantiza que el crisol no contamine el contenido, manteniendo así la pureza de los materiales que se procesan. 3. Alta resistencia mecánica: La alta densidad y resistencia mecánica de la alúmina hacen que estos crisoles sean duraderos y resistentes al desgaste, incluso en duras condiciones de funcionamiento. 4. Excelente resistencia al choque térmico: Los crisoles de alúmina pueden soportar cambios rápidos de temperatura sin agrietarse ni romperse, lo que es crucial en procesos que implican ciclos frecuentes de calentamiento y enfriamiento. 5. Baja conductividad térmica: La alúmina tiene baja conductividad térmica, lo que ayuda a mantener temperaturas constantes dentro del crisol, garantizando así condiciones de procesamiento uniformes.
    Send Email Más
  • 1. Alta estabilidad térmica: los crisoles de alúmina se destacan por mantener la integridad estructural a temperaturas elevadas, soportando calor de hasta 1600 °C o más dependiendo de los grados y formulaciones específicos. 2. Inercia química: Resistentes a la mayoría de los ácidos, bases y solventes, los crisoles de alúmina proporcionan un entorno no reactivo esencial para manipular sustancias reactivas y realizar reacciones químicas precisas. 3. Durabilidad mecánica: Con propiedades mecánicas superiores, que incluyen alta dureza y resistencia a la abrasión, los crisoles de alúmina exhiben una notable resistencia al estrés físico, lo que garantiza longevidad y confiabilidad en las operaciones de laboratorio. 4. Calentamiento uniforme: Su excelente conductividad térmica promueve una distribución uniforme del calor, esencial para obtener resultados experimentales consistentes y minimizar los diferenciales de temperatura dentro del crisol.
    Send Email Más
  • 1. Resistencia a altas temperaturas: 1600 ℃ en uso prolongado, 1800 ℃ en uso breve. Esto lo convierte en una solución ideal para diversas aplicaciones de procesamiento térmico. 2. Excelente resistencia al choque térmico: Los crisoles de alúmina tienen una excelente resistencia al choque térmico, lo que significa que pueden soportar cambios rápidos de temperatura sin agrietarse ni romperse. 3. No reactivo: Los crisoles de alúmina no son reactivos, lo que significa que no reaccionarán con las sustancias que se calientan, funden o cuelan en su interior, lo que garantiza la pureza del producto final. 4. Resistencia química y a la corrosión: el material cerámico utilizado en el crisol de alúmina presenta una excelente resistencia química y a la corrosión. Como resultado, puede soportar productos químicos agresivos y ácidos que, de lo contrario, podrían dañar otros materiales. 5. Expansión térmica mínima: El crisol de alúmina tiene una expansión térmica mínima, lo que significa que mantendrá su forma y tamaño a altas temperaturas, evitando cualquier riesgo potencial de.
    Send Email Más